Published in

Nature Research, Nature Communications, 1(6), 2015

DOI: 10.1038/ncomms7693

Links

Tools

Export citation

Search in Google Scholar

A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSkeletal muscle has a pleiotropic role in organismal energy metabolism, for example, by storing protein as an energy source, or by excreting endocrine hormones. Muscle proteolysis is tightly controlled by the hypothalamus-pituitary-adrenal signalling axis via a glucocorticoid-driven transcriptional programme. Here we unravel the physiological significance of this catabolic process using skeletal muscle-specific glucocorticoid receptor (GR) knockout (GRmKO) mice. These mice have increased muscle mass but smaller adipose tissues. Metabolically, GRmKO mice show a drastic shift of energy utilization and storage in muscle, liver and adipose tissues. We demonstrate that the resulting depletion of plasma alanine serves as a cue to increase plasma levels of fibroblast growth factor 21 (FGF21) and activates liver-fat communication, leading to the activation of lipolytic genes in adipose tissues. We propose that this skeletal muscle-liver-fat signalling axis may serve as a target for the development of therapies against various metabolic diseases, including obesity.