Published in

Elsevier, Solar Energy, (99), p. 115-125, 2014

DOI: 10.1016/j.solener.2013.10.033

Links

Tools

Export citation

Search in Google Scholar

Plasmonic enhanced dye-sensitized solar cells with self-assembly gold-TiO2@core–shell nanoislands

Journal article published in 2014 by Siu-Pang Ng, XiaoQing Lu, Ning Ding, Chi-Man Lawrence Wu, Chun-Sing Lee ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Decorating TiO2 photoanode of dye-sensitized solar cell (DSSC) with silver or gold nanoparticles has been shown to be an effective approach for enhancing device performance via the plasmonic effects. Here, we show for the first time that the same approach can be adopted simultaneously for both the photoanode and the counter-electrode of a DSSC but operates with different enhancement mechanism. In this work, the plasmonic nanostructure is synthesized by physical vapor deposition of ultra-thin gold films onto the electrodes followed by thermal annealing at a recommended TiO2 sintering temperature to form self-assembly gold nanoislands. Protective TiO2 nanoshells were formed by hydrolysis of titanium isopropoxide (TIP) precursor over the gold nanoislands. By varying the initial gold film thickness, gold nanoislands of controllable dimensions are distributed uniformly over the electrode surfaces. It was found that the optimized core–shell nanoislands nearly doubles the short circuit photocurrent density from 9.4 mA/cm2 to 17.5 mA/cm2, and has little impact on the open circuit voltage, resulting in a substantial uplift of the energy conversion efficiency.