Published in

American Physical Society, Physical Review Letters, 6(111), 2013

DOI: 10.1103/physrevlett.111.060601

Links

Tools

Export citation

Search in Google Scholar

Monte carlo adaptive resolution simulation of multicomponent molecular liquids

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Complex soft matter systems can be efficiently studied with the help of adaptive resolution simulation methods, concurrently employing two levels of resolution in different regions of the simulation domain. The nonmatching properties of high- and low-resolution models, however, lead to thermodynamic imbalances between the system’s subdomains. Such inhomogeneities can be healed by appropriate compensation forces, whose calculation requires nontrivial iterative procedures. In this work we employ the recently developed Hamiltonian adaptive resolution simulation method to perform Monte Carlo simulations of a binary mixture, and propose an efficient scheme, based on Kirkwood thermodynamic integration, to regulate the thermodynamic balance of multicomponent systems