Published in

American Meteorological Society, Journal of Climate, 21(19), p. 5479-5499, 2006

DOI: 10.1175/jcli3911.1

Links

Tools

Export citation

Search in Google Scholar

Water mass distribution and ventilation time scales in a cost-efficient, three-dimensional ocean model

Journal article published in 2006 by Simon A. Müller, Fortunat Joos ORCID, Neil R. Edwards, Thomas F. Stocker
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract A cost-efficient, seasonally forced three-dimensional frictional geostrophic balance ocean model (Bern3D) has been developed that features isopycnal diffusion and Gent–McWilliams transport parameterization, 32 depth layers, and an implicit numerical scheme for the vertical diffusion. It has been tuned toward observed chlorofluorocarbon (CFC-11) inventories and deep ocean radiocarbon signatures to reproduce the ventilation time scales of the thermocline and the deep ocean. Model results are consistent with the observed large-scale distributions of temperature, salinity, natural and bomb-produced radiocarbon, CFC-11, anthropogenic carbon, 39Ar/Ar, and estimates of the meridional heat transport. Root-mean-square errors for the temperature and salinity fields are 1 K and 0.2 psu, comparable to results from the Ocean Carbon-Cycle Model Intercomparison Project. Global inventories of CFC-11 and anthropogenic carbon agree closely with observation-based estimates. Model weaknesses include a too-weak formation and propagation of Antarctic Intermediate Water and of North Atlantic Deep Water. The model has been applied to quantify the recent carbon balance, surface-to-deep transport mechanisms, and the importance of vertical resolution for deep equatorial upwelling. Advection is a dominant surface-to-deep transport mechanism, whereas explicit diapycnal mixing is of little importance for passive tracers and contributes less than 3% to the modeled CFC-11 inventory in the Indo-Pacific. Decreasing the vertical resolution from 32 to 8 layers causes deep equatorial upwelling to increase by more than a factor of 4. Modeled ocean uptake of anthropogenic carbon is 19.7 GtonC over the decade from 1993 to 2003, comparable to an estimate from atmospheric oxygen data of 22.4 ± 6.1 GtonC.