Published in

American Chemical Society, Inorganic Chemistry, 20(52), p. 11923-11933, 2013

DOI: 10.1021/ic401613w

Links

Tools

Export citation

Search in Google Scholar

Kinetic and Electrochemical Studies of the Oxidative Addition of Demanding Organic Halides to Pd(0): the Efficiency of Polyphosphane Ligands in Low Palladium Loading Cross-Couplings Decrypted

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oxidative addition (OA) of organic halides to palladium(0) species is a fundamental reaction step which initiates the C–C bond formation catalytic processes typical of Pd(0)/Pd(II) chemistry. The use of structurally congested polyphosphane ligands in palladium-catalyzed C–C bond formation has generated very high turnover numbers (TONs) in topical reactions such as Heck, Suzuki, Sonogashira couplings, and direct sp2C–H functionalization. Herein, the OA of aryl bromides to Pd(0) complexes stabilized by ferrocenylpolyphosphane ligands L1 (tetraphosphane), L2 (triphosphane), and L3 (diphosphane) is considered. The investigation of kinetic constants for the addition of Ph–Br to Pd(0) intermediates (generated by electrochemical reduction of Pd(II) complexes coordinated by L1–L3) is reported. Thus, in the OA of halides to the Pd(0) complex coordinated by L1 the series of rate constants kapp is found (mol–1 L s–1): kapp(Ph–Br) = 0.48 > kapp(ClCH2–Cl) = 0.25 ≫ kapp(p-MeC6H4–Br) = 0.08 ≈ kapp(o-MeC6H4–Br) = 0.07 ≫ kapp(Ph–Cl). Kinetic measurements clarify the influence that the presence of four, three, or two phosphorus atoms in the coordination sphere of Pd has on OA. The presence of supplementary phosphorus atoms in L1 and L2 unambiguously stabilizes Pd(0) species and thus slows down the OA of Ph–Br to Pd(0) of about 2 orders of magnitude compared to the diphosphane L3. The electrosynthesis of the complexes resulting from the OA of organic halides to [Pd(0)/L] is easily performed and show the concurrent OA to Pd(0) of the sp3C–Cl bond of dichloromethane solvent. The resulting unstable Pd/alkyl complex is characterized by NMR and single crystal X-ray structure. We additionally observed the perfect stereoselectivity of the OA reactions which is induced by the tetraphosphane ligand L1. Altogether, a clearer picture of the general effects of congested polydentate ligands on the OA of organic halides to Pd(0) is given.