Published in

American Chemical Society, Journal of the American Chemical Society, 49(135), p. 18575-18585, 2013

DOI: 10.1021/ja409085j

Links

Tools

Export citation

Search in Google Scholar

HIV-1 Nucleocapsid Proteins as Molecular Chaperones for Tetramolecular Antiparallel G-Quadruplex Formation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

HIV-1 nucleocapsid proteins (NCps) facilitate remodeling of nucleic acids to fold thermodynamically stable conformations, and thus called nucleic acid chaperones. To date only little is known on the stoichiometry, NCp-NCp interactions, chaperone activity on G-quadruplex formation, and so on. We report here the direct and real-time analysis on such properties of proteolytic intermediate NCp15 and mature NCp7 using DNA origami. The protein particles were found to predominantly exist in monomeric form, while dimeric and multimeric forms were also observed both in free solution and bound to the quadruplex structure. The formation and the dissociation events of the G-quadruplexes were well documented in real-time and the intermediate-like states were also visualized. We anticipate that this pioneering study will strengthen our understanding on the chaperone activity of HIV-1 proteins which in turn will be helpful for the drug design based on G-quadruplex and also for the development of drugs against AIDS.