Published in

Cell Press, Current Biology, 22(24), p. 2728-2732, 2014

DOI: 10.1016/j.cub.2014.09.071

Links

Tools

Export citation

Search in Google Scholar

Convergent genetic architecture underlies social organization in ants

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Complex adaptive polymorphisms are common in nature, but what mechanisms maintain the underlying favorable allelic combinations [1-4]? The convergent evolution of polymorphic social organization in two independent ant species provides a great opportunity to investigate how genomes evolved under parallel selection. Here, we demonstrate that a large, nonrecombining ''social chromosome'' is associated with social organization in the Alpine silver ant, Formica selysi. This social chromosome shares architectural characteristics with that of the fire ant Solenopsis invicta [2], but the two show no detectable similarity in gene content. The discovery of convergence at two levels - the phenotype and the genetic architecture associated with alternative social forms - points at general genetic mechanisms underlying transitions in social organization. More broadly, our findings are consistent with recent theoretical studies suggesting that suppression of recombination plays a key role in facilitating coordinated shifts in coadapted traits [5, 6].