Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 34(106), p. 8858-8869, 2002

DOI: 10.1021/jp020356s

Links

Tools

Export citation

Search in Google Scholar

Dynamic conformations of flavin adenine dinucleotide: Simulated molecular dynamics of the flavin cofactor related to the time-resolved fluorescence characteristics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular dynamics (MD) simulations and polarized subnanosecond time-resolved flavin fluorescence spectroscopy have been used to study the conformational dynamics of the flavin adenine dinucleotide (FAD) cofactor in aqueous solution. FAD displays a highly heterogeneous fluorescence intensity decay, resulting in lifetime spectra with two major components: a dominant 7-ps contribution that is characteristic of ultrafast fluorescence quenching and a 2.7-ns contribution resulting from moderate quenching. MD simulations were performed in both the ground state and first excited state. The simulations showed transitions from "open" conformations to "closed" conformations in which the flavin and adenine ring systems stack coplanarly. Stacking generally occurred within the lifetime of the flavin excited state (4.7 ns in water), and yielded a simulated fluorescence lifetime on the order of the nanosecond lifetime that was observed experimentally. Hydrogen bonds in the ribityl-pyrophosphate-ribofuranosyl chain connecting both ring systems form highly stable cooperative networks and dominate the conformational transitions of the molecule. Fluorescence quenching in FAD is mainly determined by the coplanar stacking of the flavin and adenine ring systems, most likely through a mechanism of photoinduced electron transfer. Whereas in stacked conformations fluorescence is quenched nearly instantaneously, open fluorescent conformations can stack during the lifetime of the flavin excited state, resulting in immediate fluorescence quenching upon stacking.