Published in

Hindawi, Mathematical Problems in Engineering, (2013), p. 1-9, 2013

DOI: 10.1155/2013/543026

Links

Tools

Export citation

Search in Google Scholar

The Use of Fractional Order Derivative to Predict the Groundwater Flow

Journal article published in 2013 by Abdon Atangana ORCID, Necdet Bildik ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of this work was to convert the Thiem and the Theis groundwater flow equation to the time-fractional groundwater flow model. We first derived the analytical solution of the Theim time-fractional groundwater flow equation in terms of the generalized Wright function. We presented some properties of the Laplace-Carson transform. We derived the analytical solution of the Theis-time-fractional groundwater flow equation (TFGFE) via the Laplace-Carson transform method. We introduced the generalized exponential integral, as solution of the TFGFE. This solution is in perfect agreement with the data observed from the pumping test performed by the Institute for Groundwater Study on one of its borehole settled on the test site of the University of the Free State. The test consisted of the pumping of the borehole at the constant discharge rateQand monitoring the piezometric head for 350 minutes.