Published in

Springer, Polar Biology, 7(34), p. 1019-1032, 2011

DOI: 10.1007/s00300-011-0961-x

Links

Tools

Export citation

Search in Google Scholar

The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms

Journal article published in 2011 by S. Reeves, A. McMinn, A. Martin ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

While global climate change in polar regions is expected to cause significant warming, the annual cycle of light and dark will remain unchanged. Cultures of three species of Antarctic sea ice diatoms, Fragilariopsis cylindrus (Grunow) Krieger, Thalassiosira antarctica Comber and Entomoneis kjellmanii (P.T. Cleve) Poulin and Cardinal, were incubated in the dark and exposed to differing temperatures. Maximum dark survival times varied between 30 and 60 days. Photosynthetic parameters, photosynthetic efficiency (a), maximum quantum yield (Fv/ Fm), maximum relative electron transport rate (rETRmax) and non-photochemical quenching (NPQ), showed that dark exposure had a significant impact on photoacclimation. In contrast, elevated temperatures had a relatively minor impact on photosynthetic functioning during the dark exposure period but had a considerable impact on dark survival with minimal dark survival times reduced to only 7 days when exposed to 10C. Recovery of maximum quantum yield of fluorescence (Fv/Fm) was not significantly impacted by temperature, species or dark exposure length. Recovery rates of Fv/Fm ranged from -5.06E- 7 ± 2.71E-7 s-1 to 1.36E-5 ± 1.53E-5 s-1 for monthly experiments and from -9.63E-7 ± 7.71E-7 s-1 to 2.65E-5 ± 2.97E-5 s-1 for weekly experiments. NPQ recovery was greater and more consistent than Fv/Fm recovery, ranging between 5.74E-7 ± 8.11E-7 s-1 to 7.50E-3 ± 7.1E-4 s-1. The concentration of chl-a and monosaccharides remained relatively constant in both experiments. These results suggest that there will probably be little effect on Antarctic microalgae with increasing water temperatures during the Antarctic winter.