Published in

Wiley, physica status solidi (b) – basic solid state physics, 12(249), p. 2416-2419, 2012

DOI: 10.1002/pssb.201200146

Links

Tools

Export citation

Search in Google Scholar

Growth, dispersion, and electronic devices of nitrogen-doped single-wall carbon nanotubes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper describes the complete processes from growth to electronic devices of nitrogen-doped single-wall carbon nanotubes (N-SWCNTs). The N-SWCNTs were synthesized using a floating catalyst chemical vapor deposition method. The dry-deposited N-SWCNT films were dispersed in N-methylpyrolidone followed by sonication and centrifugation steps to yield a stable dispersion of N-SWCNTs in solution. The length and diameter distribution as well as concentration of N-SWCNTs in solution were measured by atomic force microscopy and optical absorption spectroscopy, respectively. The N-SWCNTs were then assembled into electronic devices using bottom–up dielectrophoresis and characterized as field-effect transistors. Finally, the potential for application of N-SWCNTs in sensors is discussed. The three stages of N-doped SWCNT processing: (a) growth and collection on filter, (b) dispersion in NMP, and (c) dielectrophoretic assembly into transistor device.