Published in

Wiley, The Plant Journal, p. no-no, 2010

DOI: 10.1111/j.1365-313x.2010.04317.x

Links

Tools

Export citation

Search in Google Scholar

Cyclin-dependent kinase activity retains the shoot apical meristem cells in an undifferentiated state

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

As the shoot apex produces most of the cells that comprise the aerial part of the plant, perfect orchestration between cell division rates and fate specification is essential for normal organ formation and plant development. However, the inter-dependence of cell-cycle machinery and meristem-organizing genes is still poorly understood. To investigate this mechanism, we specifically inhibited the cell-cycle machinery in the shoot apex by expression of a dominant negative allele of the A-type cyclin-dependent kinase (CDK) CDKA;1 in meristematic cells. A decrease in the cell division rate within the SHOOT MERISTEMLESS domain of the shoot apex dramatically affected plant growth and development. Within the meristem, a subset of cells was driven into the differentiation pathway, as indicated by premature cell expansion and onset of endo-reduplication. Although the meristem structure and expression patterns of the meristem identity genes were maintained in most plants, the reduced CDK activity caused splitting of the meristem in some plants. This phenotype correlated with the level of expression of the dominant negative CDKA;1 allele. Therefore, we propose a threshold model in which the effect of the cell-cycle machinery on meristem organization is determined by the level of CDK activity.