Dissemin is shutting down on January 1st, 2025

Published in

University of Hawaii Press, Pacific Science, 1(59), p. 1-15

DOI: 10.1353/psc.2005.0005

Links

Tools

Export citation

Search in Google Scholar

Hydrologic and isotopic modeling of Alpine Lake Waiau, Mauna Kea, Hawai'i

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Analysis of hydrologic, meteorologic, and isotopic data collected over 3 yr quantifies and explains the enormous variability and isotopic enrichment (δ18O = +16.9, δD = +50.0) of alpine Lake Waiau, a culturally and ecologically significant perched lake near the summit of Mauna Kea, Hawai'i. Further, a simple one-dimensional hydrologic model was developed that couples standard water budget modeling with modeling of δD and δ18O isotopic composition to provide daily predictions of lake volume and chemistry. Data analysis and modeling show that winter storms are the primary source of water for the lake, adding a distinctively light isotopic signature appropriate for high-altitude precipitation. Evaporation at the windy, dry summit is the primary loss mechanism for most of the year, greatly enriching the lake in heavy isotopes.