Published in

Oxford University Press, Journal of the National Cancer Institute, 21(100), p. 1519-1529, 2008

DOI: 10.1093/jnci/djn345

Links

Tools

Export citation

Search in Google Scholar

Skewed X chromosome inactivation and breast and ovarian cancer status: Evidence for X-linked modifiers of BRCA1

Journal article published in 2008 by P. Webb, N. Traficante, T. Vanden Bergh, A. Stenlake, H. Sullivan, S. Moore, T. Sadkowsky, A. Mellon, J. White, Amanda B. Spurdle, R. Robertson, J. Maidens, S. Viduka, K. Nattress, H. Tran and other authors.
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND: X chromosome inactivation, which silences gene expression from one of the two X chromosomes in females, is usually random. Skewed X inactivation has been implicated in both the expression and the suppression of X-linked disease phenotypes and has been reported to occur more frequently in breast and ovarian cancer patients, including BRCA1 or BRCA2 mutation carriers, than in control subjects. METHODS: We assessed the pattern of X chromosome inactivation using methylation-specific polymerase chain reaction amplification of the exon 1 microsatellite region of the X-linked androgen receptor (AR) gene in DNA from blood samples obtained from control subjects without a personal history of breast or ovarian cancer (n = 735), ovarian cancer patients (n = 313), familial breast cancer patients who did not carry mutations in BRCA1 or BRCA2 (n = 235), and affected and unaffected carriers of mutations in BRCA1 (n = 260) or BRCA2 (n = 63). We defined the pattern of X chromosome inactivation as skewed when the same X chromosome was active in at least 90% of cells. The association between skewed X inactivation and disease and/or BRCA mutation status was assessed by logistic regression analysis. The association between skewed X inactivation and age at cancer diagnosis was assessed by Cox proportional hazards regression analysis. All statistical tests were two-sided. RESULTS: The age-adjusted frequency of skewed X inactivation was not statistically significantly higher in ovarian cancer or familial breast cancer case subjects compared with control subjects. Skewed X inactivation was higher in BRCA1 mutation carriers than in control subjects (odds ratio [OR] = 2.7, 95% confidence interval [CI] = 1.1 to 6.2; P = .02), particularly among unaffected women (OR = 6.1, 95% CI = 1.5 to 31.8; P = .005). Among BRCA1 mutation carriers, those with skewed X inactivation were older at diagnosis of breast or ovarian cancer than those without skewed X inactivation (hazard ratio [HR] of breast or ovarian cancer = 0.37, 95% CI = 0.14 to 0.95; P = .04). Among BRCA2 mutation carriers, skewed X inactivation also occurred more frequently in unaffected carriers than in those diagnosed with breast or ovarian cancer (OR = 5.2, 95% CI = 0.5 to 28.9; P = .08) and was associated with delayed age at onset (HR = 0.59, 95% CI = 0.37 to 0.94; P = .03). CONCLUSIONS: Skewed X inactivation occurs at an increased frequency in BRCA1 (and possibly BRCA2) mutation carriers compared with control subjects and is associated with a statistically significant increase in age at diagnosis of breast and ovarian cancer. ; Felicity Lose, David L. Duffy, Graham F. Kay, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, Australian Ovarian Cancer Study Management Group, Mary A. Kedda, Amanda B. Spurdle