Published in

Taylor and Francis Group, Remote Sensing Letters, 4(4), p. 373-380

DOI: 10.1080/2150704x.2012.736694

Links

Tools

Export citation

Search in Google Scholar

Geographically weighted methods for estimating local surfaces of overall, user and producer accuracies

Journal article published in 2013 by Alexis J. Comber ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The confusion matrix is the standard way for reporting the accuracy of land cover and other information classified from remote-sensing imagery. This letter describes a geographically weighted method for generating spatially distributed measures of accuracy (overall, user and producer accuracies) from a logistic geographically weighted regression. A kernel-based approach defines the data and weights that are used to calculate the accuracies at each location in the study area. The results compare the global accuracy measures from a standard confusion matrix with those that have been allowed to vary locally. Maps of spatially varying user and producer accuracies describe the spatial autocorrelation of error. The use of geographically weighted models in the context of land cover accuracy is discussed and suggested as a generic approach for examining how and where error processes vary.