Published in

American Association for Cancer Research, Clinical Cancer Research, 16(29), p. 3162-3171, 2023

DOI: 10.1158/1078-0432.ccr-23-0514

Links

Tools

Export citation

Search in Google Scholar

Spatial Immunoprofiling of Adenoid Cystic Carcinoma Reveals B7-H4 Is a Therapeutic Target for Aggressive Tumors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Adenoid cystic carcinoma (ACC) is a heterogeneous malignancy, and no effective systemic therapy exists for metastatic disease. We previously described two prognostic ACC molecular subtypes with distinct therapeutic vulnerabilities, ACC-I and ACC-II. In this study, we explored the ACC tumor microenvironment (TME) using RNA-sequencing and spatial biology to identify potential therapeutic targets. Experimental Design: Tumor samples from 62 ACC patients with available RNA-sequencing data that had been collected as part of previous studies were stained with a panel of 28 validated metal-tagged antibodies. Imaging mass cytometry (IMC) was performed using the Fluidigm Helios CyTOF instrument and analyzed with Visiopharm software. The B7-H4 antibody–drug conjugate AZD8205 was tested in ACC patient-derived xenografts (PDX). Results: RNA deconvolution revealed that most ACCs are immunologically “cold,” with approximately 30% being “hot.” ACC-I tumors with a poor prognosis harbored a higher density of immune cells; however, spatial analysis by IMC revealed that ACC-I immune cells were significantly restricted to the stroma, characterizing an immune-excluded TME. ACC-I tumors overexpressed the immune checkpoint B7-H4, and the degree of immune exclusion was directly correlated with B7-H4 expression levels, an independent predictor of poor survival. Two ACC-I/B7-H4-high PDXs obtained 90% complete responses to a single dose of AZD8205, but none were observed with isotype-conjugated payload or in an ACC-II/B7-H4 low PDX. Conclusions: Spatial analysis revealed that ACC subtypes have distinct TMEs, with enrichment of ACC-I immune cells that are restricted to the stroma. B7-H4 is highly expressed in poor-prognosis ACC-I subtype and is a potential therapeutic target.