Published in

MDPI, International Journal of Molecular Sciences, 3(25), p. 1498, 2024

DOI: 10.3390/ijms25031498

Links

Tools

Export citation

Search in Google Scholar

Identification of a Panel of miRNAs Associated with Resistance to Palbociclib and Endocrine Therapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigated whether we could identify a panel of miRNAs associated with response to treatment in tumor tissues of patients with Hormone Receptor-positive/HER2-negative metastatic breast cancer treated with endocrine therapy (ET) and the CDK4/6 inhibitor (CDK4/6i)i palbociclib. In total, 52 patients were evaluated, with 41 receiving treatment as the first line. The overall median PFS was 20.8 months (range 2.5–66.6). In total, 23% of patients experienced early progression (<6 months). Seven miRNAs (miR-378e, miR-1233, miR-99b-5p, miR-1260b, miR-448, -miR-1252-5p, miR-324-3p, miR-1233-3p) showed a statistically significant negative association with PFS. When we considered PFS < 6 months, miR-378e, miR-99b-5p, miR-877-5p, miR-1297, miR-455-5p, and miR-4536-5p were statistically associated with a poor outcome. In the multivariate analysis, the first three miRNAs confirmed a significant and independent impact on PFS. The literature data and bioinformatic tools provide an underlying molecular rationale for most of these miRNAs, mainly involving the PI3K/AKT/mTOR pathway and cell-cycle machinery as cyclin D1, CDKN1B, and protein p27Kip1 and autophagy. Our findings propose a novel panel of miRNAs associated with a higher likelihood of early progression in patients treated with ET and Palbociclib and may contribute to shed some light on the mechanisms of de novo resistance to CDK4/6i, but this should be considered exploratory and evaluated in larger cohorts.