Published in

Wiley, New Phytologist, 4(239), p. 1225-1238, 2023

DOI: 10.1111/nph.19009

Links

Tools

Export citation

Search in Google Scholar

Peeking under the canopy: anomalously short fire‐return intervals alter subalpine forest understory plant communities

Journal article published in 2023 by Nathan G. Kiel ORCID, Kristin H. Braziunas ORCID, Monica G. Turner ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Climate change is driving changes in disturbance regimes world‐wide. In forests adapted to infrequent, high‐severity fires, recent anomalously short fire‐return intervals (FRIs) have resulted in greatly reduced postfire tree regeneration. However, effects on understory plant communities remain unexplored. Understory plant communities were sampled in 31 plot pairs across Greater Yellowstone (Wyoming, USA). Each pair included one plot burned at high severity twice in < 30 yr and one plot burned in the same most recent fire but not burned previously for > 125 yr. Understory communities following short‐interval fires were also compared with those following the previous long‐interval fire. Species capable of growing in drier conditions and in lower vegetation zones became more abundant and regional differences in plant communities declined following short‐interval fire. Dissimilarity between plot pairs increased in mesic settings and decreased with time since fire and postfire winter snowfall. Reduced postfire tree density following short‐interval fire rather than FRI per se affected the occurrence of most plant species. Anomalously short FRIs altered understory plant communities in space and time, with some indications of community thermophilization and regional homogenization. These and other shifts in understory plant communities may continue with ongoing changes in climate and fire across temperate forests.