Published in

Wiley, Angewandte Chemie, 29(135), 2023

DOI: 10.1002/ange.202304957

Wiley, Angewandte Chemie International Edition, 29(62), 2023

DOI: 10.1002/anie.202304957

Links

Tools

Export citation

Search in Google Scholar

Photochemically‐Driven CO<sub>2</sub> Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractOne of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically‐driven approach for CO2 release by exploiting the unique properties of an indazole metastable‐state photoacid (mPAH). Our measurements on simulated and amino acid‐based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid‐based DAC systems, respectively. Our results confirm the feasibility of on‐demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents.