Published in

Public Library of Science, PLoS ONE, 3(19), p. e0291960, 2024

DOI: 10.1371/journal.pone.0291960

Links

Tools

Export citation

Search in Google Scholar

The impact of genetically controlled splicing on exon inclusion and protein structure

Journal article published in 2024 by Jonah Einson ORCID, Mariia Minaeva ORCID, Faiza Rafi, Tuuli Lappalainen ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Common variants affecting mRNA splicing are typically identified though splicing quantitative trait locus (sQTL) mapping and have been shown to be enriched for GWAS signals by a similar degree to eQTLs. However, the specific splicing changes induced by these variants have been difficult to characterize, making it more complicated to analyze the effect size and direction of sQTLs, and to determine downstream splicing effects on protein structure. In this study, we catalogue sQTLs using exon percent spliced in (PSI) scores as a quantitative phenotype. PSI is an interpretable metric for identifying exon skipping events and has some advantages over other methods for quantifying splicing from short read RNA sequencing. In our set of sQTL variants, we find evidence of selective effects based on splicing effect size and effect direction, as well as exon symmetry. Additionally, we utilize AlphaFold2 to predict changes in protein structure associated with sQTLs overlapping GWAS traits, highlighting a potential new use-case for this technology for interpreting genetic effects on traits and disorders.