Published in

Wiley, Advanced Optical Materials, 19(11), 2023

DOI: 10.1002/adom.202300578

Links

Tools

Export citation

Search in Google Scholar

Transformation of Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> to Cs<sub>2</sub>AgBiBr<sub>6</sub> Lead‐Free Perovskite Microcrystals Through Cation Exchange

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractAll‐inorganic lead‐free Cs2AgBiBr6 double perovskites have gained significant attention due to their potential as stable and nontoxic photoactive semiconductors. Currently, it remains challenging to synthesize homogeneous microcrystals (MCs) exhibiting excellent properties, which are necessary for large‐area device integration. This work proposes a two‐step synthesis approach involving the introduction of a foreign silver cation to transform the 0D layered Cs3Bi2Br9 to 3D Cs2AgBiBr6 perovskite structure. This work has studied the cation exchange (CE) transformation mechanism by isolating intermediates to be able to follow the evolution of the crystal lattice as well as the structural and optical properties over time. Moreover, complete CE results in phase‐pure, highly crystalline Cs2AgBiBr6 MCs exhibiting excellent photonic properties, superior to their counterparts synthesized by anti‐solvent precipitation. These findings highlight the potential of CE‐induced transformation as a means of synthesizing novel, stable perovskites.