Published in

American Heart Association, Stroke, 10(54), p. 2613-2620, 2023

DOI: 10.1161/strokeaha.123.042835

Links

Tools

Export citation

Search in Google Scholar

Cerebral Microbleed Patterns and Cortical Amyloid-β: The ARIC-PET Study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND: Cerebral microbleeds (CMBs) are associated with cognitive decline, but their importance outside of cerebral amyloid angiopathy and the mechanisms of their impact on cognition are poorly understood. We evaluated the cross-sectional association between CMB patterns and cerebral Aβ (amyloid-β) deposition, by florbetapir positron emission tomography. METHODS: The longitudinal ARIC study (Atherosclerosis Risk in Communities) recruited individuals from 4 US communities from 1987 to 1989. From 2012 to 2014, the ARIC-PET (Atherosclerosis Risk in Communities - Positron Emission Tomography) ancillary recruited 322 nondemented ARIC participants who completed 3T brain magnetic resonance imaging with T2*GRE as part of ARIC visit 5 to undergo florbetapir positron emission tomography imaging. Magnetic resonance imaging images were read for CMBs and superficial siderosis; on positron emission tomography, global cortical standardized uptake value ratio >1.2 was considered a positive Aβ scan. Multivariable logistic regression models evaluated CMB characteristics in association with Aβ positivity. Effect modification by sex, race, APOE status, and cognition was evaluated. RESULTS: CMBs were present in 24% of ARIC-PET participants. No significant associations were found between CMBs and Aβ positivity, but a pattern of isolated lobar CMBs or superficial siderosis was associated with over 4-fold higher odds of elevated Aβ when compared with those with no CMBs (odds ratio, 4.72 [95% CI, 1.16–19.16]). A similar elevated risk was not observed in those with isolated subcortical or mixed subcortical and either lobar CMBs or superficial siderosis. Although no significant interactions were found, effect estimates for elevated Aβ were nonsignificantly lower ( P >0.10, odds ratio, 0.4–0.6) for a mixed CMB pattern, and odds ratios were nonsignificantly higher for lobar-only CMBs for 4 subgroups: women (versus men); Black participants (versus White participants), APOE ε4 noncarriers (versus carriers), and cognitively normal (versus mild cognitive impairment). CONCLUSIONS: In this community-based cohort of nondemented adults, lobar-only pattern of CMBs or superficial siderosis is most strongly associated with brain Aβ, with no elevated risk for a mixed CMB pattern. Further studies are needed to understand differences in CMB patterns and their meaning across subgroups.