Published in

American Geophysical Union, Journal of Geophysical Research: Atmospheres, 14(128), 2023

DOI: 10.1029/2022jd037773

Links

Tools

Export citation

Search in Google Scholar

Improved Constraints on the Recent Terrestrial Carbon Sink Over China by Assimilating OCO‐2 XCO<sub>2</sub> Retrievals

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractThe magnitude and distribution of China's terrestrial carbon sink remain uncertain due to insufficient observational constraints; satellite column‐average dry‐air mole fraction carbon dioxide (XCO2) retrievals may fill some of this gap. Here, we estimate China's carbon sink using atmospheric inversions of the Orbiting Carbon Observatory 2 (OCO‐2) XCO2 retrievals within different platforms, including the Global Carbon Assimilation System (GCAS) v2, the Copernicus Atmosphere Monitoring Service, and the OCO‐2 Model Inter‐comparison Project (MIP). We find that they consistently place the largest net biome production (NBP) in the south on an annual basis compared to the northeast and other main agricultural areas during peak growing season, coinciding well with the distribution of forests and crops, respectively. Moreover, the mean seasonal cycle amplitude of NBP in OCO‐2 inversions is obviously larger than that of biosphere model simulations and slightly greater than surface CO2 inversions. More importantly, the mean seasonal cycle of the OCO‐2 inversions is well constrained in the temperate, tropical, and subtropical monsoon climate zones, with better inter‐model consistency at a sub‐regional scale compared to in situ inversions and biosphere model simulations. In addition, the OCO‐2 inversions estimate the mean annual NBP in China for 2015–2019 to be between 0.34 (GCASv2) and 0.47 ± 0.16 PgC/yr (median ± std; OCO‐2 v10 MIP), and indicate the impacts of climate extremes (e.g., the 2019 drought) on the interannual variations of NBP. Our results suggest that assimilating OCO‐2 XCO2 retrievals is crucial for improving our understanding of China's terrestrial carbon sink regime.