Published in

Dove Press, OncoTargets and Therapy, p. 157

DOI: 10.2147/ott.s39096

Links

Tools

Export citation

Search in Google Scholar

BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Francesco Spagnolo,1 Paola Ghiorzo,2,3 Laura Orgiano,4 Lorenza Pastorino,2,3 Virginia Picasso,4 Elena Tornari,4 Vincenzo Ottaviano,4 Paola Queirolo4 1Department of Plastic and Reconstructive Surgery, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy; 2Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genova, Italy; 3Genetics of Rare Cancers, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy; 4Department of Medical Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy Abstract: BRAF inhibitors vemurafenib and dabrafenib achieved improved overall survival over chemotherapy and have been approved for the treatment of BRAF-mutated metastatic melanoma. More recently, the combination of BRAF inhibitor dabrafenib with MEK inhibitor trametinib has shown improved progression-free survival, compared to dabrafenib monotherapy, in a Phase II study and has received approval by the US Food and Drug Administration. However, even when treated with the combination, most patients develop mechanisms of acquired resistance, and some of them do not achieve tumor regression at all, because of intrinsic resistance to therapy. Along with the development of BRAF inhibitors, immunotherapy made an important step forward: ipilimumab, an anti-CTLA-4 monoclonal antibody, was approved for the treatment of metastatic melanoma; anti-PD-1 agents achieved promising results in Phase I/II trials, and data from Phase III studies will be ready soon. The availability of such drugs, which are effective regardless of BRAF status, has made the therapeutic approach more complex, as first-line treatment with BRAF inhibitors may not be the best choice for all BRAF-mutated patients. The aim of this paper is to review the systemic therapeutic options available today for patients affected by BRAF V600-mutated metastatic melanoma, as well as to summarize the mechanisms of resistance to BRAF inhibitors and discuss the possible strategies to overcome them. Moreover, since the molecular analysis of tumor specimens is now a pivotal and decisional factor in the treatment strategy of metastatic melanoma patients, the advances in the molecular detection techniques for the BRAF V600 mutation will be reported. Keywords: melanoma, BRAF, vemurafenib, dabrafenib, resistance, BRAF inhibitor