Published in

IOP Publishing, Journal of Physics: Condensed Matter, 28(33), p. 285504, 2021

DOI: 10.1088/1361-648x/abfdf3

Links

Tools

Export citation

Search in Google Scholar

Adlayer influence on Dirac-type surface state at W(110)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In a combined experimental and theoretical study, we investigated how Fe and Co adlayers on W(110) affect the Dirac-type surface state (DSS). Angle-resolved photoelectron spectroscopy data show an increase in binding energy of 75 meV and 107 meV for Fe and Co, respectively. In order to identify the origin of the energy shift we performed first-principles calculations of the surface electronic structure. The inward surface relaxation of the uncovered W(110) surface is lifted by the adlayers. This structural change is one reason of the energy shift of the DSS. Furthermore, the Fe and Co adlayers change the surface potential, which results in an additional energy shift of the DSS.