Published in

IOP Publishing, Nano Express, 2(2), p. 024002, 2021

DOI: 10.1088/2632-959x/abfe3c

Links

Tools

Export citation

Search in Google Scholar

Using pulsed mode scanning electron microscopy for cathodoluminescence studies on hybrid perovskite films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The use of pulsed mode scanning electron microscopy cathodoluminescence (CL) for both hyperspectral mapping and time-resolved measurements is found to be useful for the study of hybrid perovskite films, a class of ionic semiconductors that have been shown to be beam sensitive. A range of acquisition parameters is analysed, including beam current and beam mode (either continuous or pulsed operation), and their effect on the CL emission is discussed. Under optimized acquisition conditions, using a pulsed electron beam, the heterogeneity of the emission properties of hybrid perovskite films can be resolved via the acquisition of CL hyperspectral maps. These optimized parameters also enable the acquisition of time-resolved CL of polycrystalline films, showing significantly shorter lived charge carriers dynamics compared to the photoluminescence analogue, hinting at additional electron beam-specimen interactions to be further investigated. This work represents a promising step to investigate hybrid perovskite semiconductors at the nanoscale with CL.