Published in

IOP Publishing, Journal of Physics: Condensed Matter, 36(33), p. 363001, 2021

DOI: 10.1088/1361-648x/ac066b

Links

Tools

Export citation

Search in Google Scholar

The stochastic self-consistent harmonic approximation: calculating vibrational properties of materials with full quantum and anharmonic effects

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The efficient and accurate calculation of how ionic quantum and thermal fluctuations impact the free energy of a crystal, its atomic structure, and phonon spectrum is one of the main challenges of solid state physics, especially when strong anharmonicy invalidates any perturbative approach. To tackle this problem, we present the implementation on a modular Python code of the stochastic self-consistent harmonic approximation (SSCHA) method. This technique rigorously describes the full thermodynamics of crystals accounting for nuclear quantum and thermal anharmonic fluctuations. The approach requires the evaluation of the Born–Oppenheimer energy, as well as its derivatives with respect to ionic positions (forces) and cell parameters (stress tensor) in supercells, which can be provided, for instance, by first principles density-functional-theory codes. The method performs crystal geometry relaxation on the quantum free energy landscape, optimizing the free energy with respect to all degrees of freedom of the crystal structure. It can be used to determine the phase diagram of any crystal at finite temperature. It enables the calculation of phase boundaries for both first-order and second-order phase transitions from the Hessian of the free energy. Finally, the code can also compute the anharmonic phonon spectra, including the phonon linewidths, as well as phonon spectral functions. We review the theoretical framework of the SSCHA and its dynamical extension, making particular emphasis on the physical inter pretation of the variables present in the theory that can enlighten the comparison with any other anharmonic theory. A modular and flexible Python environment is used for the implementation, which allows for a clean interaction with other packages. We briefly present a toy-model calculation to illustrate the potential of the code. Several applications of the method in superconducting hydrides, charge-density-wave materials, and thermoelectric compounds are also reviewed.