Published in

American Chemical Society, Chemistry of Materials, 16(21), p. 3848-3852, 2009

DOI: 10.1021/cm9013943

Links

Tools

Export citation

Search in Google Scholar

Fabrication of core−shell structure of M@C (M=Se, Au, Ag2Se) and transformation to yolk−shell structure by electron beam irradiation or vacuum annealing.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Selenium @ carbon core−shell spheres have been synthesized via a simple one-step hydrothermal carbonization process using sucrose and sodium selenite as precursors. Metal selenide or noble metal, e.g. Ag2Se or Au, can be easily encapsulated into the carbon shell by using the as-prepared Se@C core−shell samples as site templates. The transformation from core/shell to yolk/shell structure, e.g. Se@C, Au/Se@C and Ag2Se@C, can be achieved through thermal evaporation under electron beam irradiation or vacuum annealing to evaporate Se. The optical absorption of the samples can be tuned by varying the structure/compositions of the samples.