Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(511), p. 5948-5963, 2022

DOI: 10.1093/mnras/stac425

Links

Tools

Export citation

Search in Google Scholar

Post maximum light and late time optical imaging polarimetry of type I superluminous supernova 2020znr

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Optical imaging polarimetry was conducted on the hydrogen poor superluminous supernova 2020znr during three phases after maximum light (≈ +34 d, +288 d, and +289 d). After instrumental and interstellar polarization correction, all measurements are consistent with null-polarization detection. Modelling the light curve with a magnetar spin-down model shows that SN2020znr has similar magnetar and ejecta parameters to other SLSNe. A comparison of the best-fitting values discussed in the literature on SN 2017egm and SN 2015bn, two hydrogen poor SLSNe showing an increase of polarization after maximum light, suggests that SN 2020znr has higher mass ejecta that may prevent access to the geometry of the inner ejecta with optical polarimetry. The combined information provided by spectroscopy and light-curve analysis of type I SLSNe may be an interesting avenue to categorize the polarization properties of this class of transients. This approach would require to expand the sample of SLSNe polarimetry data currently available with early and late time epochs new measurements.