Published in

Nature Research, Nature Communications, 1(13), 2022

DOI: 10.1038/s41467-022-32112-7

Links

Tools

Export citation

Search in Google Scholar

An electronic nematic liquid in BaNi2As2

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractUnderstanding the organizing principles of interacting electrons and the emergence of novel electronic phases is a central endeavor of condensed matter physics. Electronic nematicity, in which the discrete rotational symmetry in the electron fluid is broken while the translational one remains unaffected, is a prominent example of such a phase. It has proven ubiquitous in correlated electron systems, and is of prime importance to understand Fe-based superconductors. Here, we find that fluctuations of such broken symmetry are exceptionally strong over an extended temperature range above phase transitions in${{{{{\rm{Ba}}}}}}{{{{{{\rm{Ni}}}}}}}_{2}{({{{{{{\rm{As}}}}}}}_{1-x}{{{{{{\rm{P}}}}}}}_{x})}_{2}$BaNi2(As1−xPx)2, the nickel homologue to the Fe-based systems. This lends support to a type of electronic nematicity, dynamical in nature, which exhibits a particularly strong coupling to the underlying crystal lattice. Fluctuations between degenerate nematic configurations cause splitting of phonon lines, without lifting degeneracies nor breaking symmetries, akin to spin liquids in magnetic systems.