Published in

Springer, Marine Geophysical Research, 1(17), p. 63-95, 1995

DOI: 10.1007/bf01268051

Links

Tools

Export citation

Search in Google Scholar

Strike-slip tectonic processes in the northern Caribbean between Cuba and Hispaniola (Windward Passage)

Journal article published in 1995 by Éric Calais ORCID, Bernard Mercier de Lepinay
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Marine geophysical data including Seabeam, seismic reflection, magnetics, gravimetry and side-scan sonar have been recently collected along the northern Caribbean strike-slip plate boundary between Cuba and Hispaniola, in the Windward Passage area. The analysis of this comprehensive data set allows us to illustrate active strike-slip tectonic processes in relation to the kinematics of the Caribbean Plate. We show that the transcurrent plate boundary trace runs straight across the Windward Passage, from the southern Cuban Margin in the west (Oriente Fault) to the Tortue Channel in the east. The Windward Passage Deep is thus not an active pull-apart basin, as previously suggested. The plate boundary geometry implies that the motion of the Caribbean Plate relative to the North American Plate is partitioned between a strike-slip component, accommodated by the Windward Passage active fault zone, and a convergence component, accommodated by compression at the bottom of the Northern Hispaniola Margin. On the basis of a correlation with onland geological data, an age is given to the stratigraphic sequences identified on seismic profiles. A kinematic reconstruction is proposed that follows the tectonic unconformities recognized at sea and on land (Late Eocene, Early Miocene, Middle Miocene and Late Pliocene). Each one of these tectonic events corresponds to a drastic reorganization of the plate boundary geometry. We propose to correlate these events with successive collisions of the northern Caribbean mobile terranes against the Bahamas Bank. During each event, the plate boundary trace is shifted to the south and a part of the Caribbean Plate is accreted to North America.