Published in

Springer, Journal of Clinical Immunology, 2(43), p. 421-439, 2022

DOI: 10.1007/s10875-022-01390-7

Links

Tools

Export citation

Search in Google Scholar

IRAK1 Duplication in MECP2 Duplication Syndrome Does Not Increase Canonical NF-κB–Induced Inflammation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose Besides their developmental and neurological phenotype, most patients with MECP2/IRAK1 duplication syndrome present with recurrent and severe infections, accompanied by strong inflammation. Respiratory infections are the most common cause of death. Standardized pneumological diagnostics, targeted anti-infectious treatment, and knowledge of the underlying pathomechanism that triggers strong inflammation are unmet clinical needs. We investigated the influence of IRAK1 overexpression on the canonical NF-κB signaling as a possible cause for excessive inflammation in these patients. Methods NF-κB signaling was examined by measuring the production of proinflammatory cytokines and evaluating the IRAK1 phosphorylation and degradation as well as the IκBα degradation upon stimulation with IL-1β and TLR agonists in SV40-immortalized fibroblasts, PBMCs, and whole blood of 9 patients with MECP2/IRAK1 duplication syndrome, respectively. Results Both, MECP2/IRAK1-duplicated patients and healthy controls, showed similar production of IL-6 and IL-8 upon activation with IL-1β and TLR2/6 agonists in immortalized fibroblasts. In PBMCs and whole blood, both patients and controls had a similar response of cytokine production after stimulation with IL-1β and TLR4/2/6 agonists. Patients and controls had equivalent patterns of IRAK1 phosphorylation and degradation as well as IκBα degradation upon stimulation with IL-1β. Conclusion Patients with MECP2/IRAK1 duplication syndrome do not show increased canonical NF-κB signaling in immortalized fibroblasts, PBMCs, and whole blood. Therefore, we assume that these patients do not benefit from a therapeutic suppression of this pathway.