Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 22(10), p. 10875-10893, 2010

DOI: 10.5194/acp-10-10875-2010

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 5(10), p. 12585-12628

DOI: 10.5194/acpd-10-12585-2010

Links

Tools

Export citation

Search in Google Scholar

Observed 20th century desert dust variability: impact on climate and biogeochemistry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Atmospheric Chemistry and Physics 10 (2010): 10875-10893, doi:10.5194/acp-10-10875-2010. ; Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere) over the 20th century to be −0.14 ± 0.11 W/m2 (1990–1999 vs. 1905–1914). The estimated radiative change due to dust is especially strong between the heavily loaded 1980–1989 and the less heavily loaded 1955–1964 time periods (−0.57 ± 0.46 W/m2), which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 °C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC) reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC) of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding of these changes and their impacts should continue to be refined. ; We would like to acknowledge NASA grants NNG06G127G and NNX07AL80G, NSF grants NSF-0832782, 0932946, 0745961 and OPP-0538427, and the UK Natural Environment Research Council.