Published in

MDPI, Antioxidants, 1(12), p. 19, 2022

DOI: 10.3390/antiox12010019

Links

Tools

Export citation

Search in Google Scholar

Soluble Transferrin Receptor, Antioxidant Status and Cardiometabolic Risk in Apparently Healthy Individuals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Body iron excess appears to be related to insulin resistance and cardiometabolic risk and increased oxidative stress might be involved in this relationship. Very few studies have described the association between soluble transferrin receptor (sTfR) levels and cardiometabolic risk in the general population or antioxidant status. There were 239 subjects (20–65 years old) included in this cross-sectional study. Linear regressions adjusting for BMI, menopausal status, insulin resistance (HOMA-IR), physical inactivity, alcohol intake and subclinical/chronic inflammation were used to describe the association between sTfR, total antioxidant capacity (TAC), and measures of cardio-metabolic risk. sTfR levels were positively associated with TAC in men (βeta [95% confidence interval ]: 0.31 [0.14 to 0.48]) and women (βeta = 0.24 [0.07 to 0.40]) in non-adjusted and adjusted models (p < 0.05). In men, sTfR levels were inversely associated with waist circumference (βeta [95% confidence interval]: −1.12 [−2.30 to −0.22]) and fasting glucose (−2.7 (−4.82 to −0.57), and positively with LDL cholesterol (12.41 (6.08 to 18.57) before and after adjustments for confounding variables. LDL cholesterol had a significant and positive association with TAC in non-adjusted and adjusted models in men (p < 0.05). sTfR levels are significantly associated with antioxidant status and a few specific cardio-metabolic risk variables, independently of covariates that included serum ferritin and hepcidin. This might imply that iron biomarkers in regard to cardiometabolic risk reflect physiological contexts other than iron metabolism.