Published in

IOP Publishing, 2D Materials, 2(11), p. 025023, 2024

DOI: 10.1088/2053-1583/ad27e8

Links

Tools

Export citation

Search in Google Scholar

Klein tunneling degradation and enhanced Fabry-Pérot interference in graphene/h-BN moiré-superlattice devices

Journal article published in 2024 by Viet-Anh Tran, Viet-Hung Nguyen ORCID, Jean-Christophe Charlier
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Hexagonal boron-nitride (h-BN) provides an ideal substrate for supporting graphene devices to achieve fascinating transport properties, such as Klein tunneling, electron optics and other novel quantum transport phenomena. However, depositing graphene on h-BN creates moiré superlattices, whose electronic properties can be significantly manipulated by controlling the lattice alignment between layers. In this work, the effects of these moiré structures on the transport properties of graphene are investigated using atomistic simulations. At large misalignment angles (leading to small moiré cells), the transport properties (most remarkably, Klein tunneling) of pristine graphene devices are conserved. On the other hand, in the nearly aligned cases, the moiré interaction induces stronger effects, significantly affecting electron transport in graphene. In particular, Klein tunneling is significantly degraded. In contrast, strong Fabry-Pérot interference (accordingly, strong quantum confinement) effects and non-linear I-V characteristics are observed. P-N interface smoothness engineering is also considered, suggesting as a potential way to improve these transport features in graphene/h-BN devices.