Published in

MDPI, Materials, 4(16), p. 1611, 2023

DOI: 10.3390/ma16041611

Links

Tools

Export citation

Search in Google Scholar

The Impact of TPA Auxiliary Donor and the π-Linkers on the Performance of Newly Designed Dye-Sensitized Solar Cells: Computational Investigation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The efficiency of the newly designed dye-sensitized solar cells (DSSCs) containing triphenylamine, diphenylamine (TPA), phenothiazine, and phenoxazine as donors and triazine, phenyl with D1-D2-π-linker-π-(A)2 architecture has been investigated using density functional theory (DFT) and time-dependent (TD-DFT) methods. These methods were used to investigate the geometrical structures, electronic properties, absorption, photovoltaic properties, and chemical reactivity. Furthermore, the calculated results indicate that different architectures can modify the energy levels of HOMO and LUMO and reduce the energy gap. The absorption undergoes a redshift displacement. This work aims at calculating the structural geometries and the electronic and optical properties of the designed dyes. Furthermore, the dye adsorption characteristics, such as the optoelectronic properties and the adsorption energies in the TiO2 clusters, were calculated with counterpoise correction and discussed.