Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2(521), p. 1700-1726, 2023

DOI: 10.1093/mnras/stad364

Links

Tools

Export citation

Search in Google Scholar

NGTS clusters survey – IV. Search for Dipper stars in the Orion Nebular Cluster

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTThe dipper is a novel class of young stellar object associated with large drops in flux on the order of 10–50 per cent lasting for hours to days. Too significant to arise from intrinsic stellar variability, these flux drops are currently attributed to disc warps, accretion streams, and/or transiting circumstellar dust. Dippers have been previously studied in young star-forming regions, including the Orion Complex. Using Next Generation Transit Survey (NGTS) data, we identified variable stars from their light curves. We then applied a machine learning random forest classifier for the identification of new dipper stars in Orion using previous variable classifications as a training set. We discover 120 new dippers, of which 83 are known members of the Complex. We also investigated the occurrence rate of discs in our targets, again using a machine learning approach. We find that all dippers have discs, and most of these are full discs. We use dipper periodicity and model-derived stellar masses to identify the orbital distance to the inner disc edge for dipper objects, confirming that dipper stars exhibit strongly extended sublimation radii, adding weight to arguments that the inner disc edge is further out than predicted by simple models. Finally, we determine a dipper fraction (the fraction of stars with discs which are dippers) for known members of 27.8 ± 2.9 per cent. Our findings represent the largest population of dippers identified in a single cluster to date.