Published in

Wiley, Solar RRL, 8(6), 2022

DOI: 10.1002/solr.202200265

Links

Tools

Export citation

Search in Google Scholar

High‐Resistance Metal Oxide Window Layers for Optimal Front Contact Interfaces in Sb<sub>2</sub>Se<sub>3</sub> Solar Cells

Journal article published in 2022 by Joao O. Mendes ORCID, Enrico Della Gaspera ORCID, Joel van Embden ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Herein, an in‐depth experimental investigation into the effect of employing different high resistance metal oxide (HRMO) layers on the quality of the front contact in solar cells with an fluorine‐doped tin oxide (FTO)/(HRMO)/CdS/Sb2Se3/Au device architecture is presented. The application of ZnO or TiO2 HRMO layers between FTO substrates and CdS improves the overall device performance. Short‐circuit current gains of ≈20%, orders of magnitude higher shunt resistances (≈104 Ω cm2), and greatly improved device stabilities—maintaining over 95% of their initial efficiency over 137 days are observed. A suppression of the unfavorable (120) orientation of the photoactive Sb2Se3 layer is observed in devices with HRMO interlayers. The application of HRMO layers is crucial to prevent both ohmic and non‐ohmic current leaks and maintain device stability over time. Cross‐over in the current‐voltage (JV) curves observed in the case of TiO2 indicates the presence of a high barrier for the diode current in these devices. Wavelength‐dependent JV curves coupled with capacitance measurements and simulations show that this barrier can be attributed to a high density of interfacial acceptor states. In contrast, ZnO deposition is found to reduce interface defects and enhance the quality of the front contact, while boosting performance and increasing device longevity.