Published in

American Institute of Physics, The Journal of Chemical Physics, 23(155), 2021

DOI: 10.1063/5.0073407

Links

Tools

Export citation

Search in Google Scholar

Reinvestigating oxygen adsorption on Ag(111) by using strongly constrained and appropriately normed semi-local density functional with the revised Vydrov van Voorhis van der Waals force correction

Journal article published in 2021 by Jack J. Hinsch ORCID, Junxian Liu ORCID, Yun Wang ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

While density functional theory (DFT) at the generalized gradient approximation (GGA) level has made great success in catalysis, it fails in some important systems such as the adsorption of the oxygen molecule on the Ag(111) surface. Previous DFT studies at the GGA level revealed theoretical inconsistencies on the adsorption energies and dissociation barriers of O2 on Ag(111) in comparison with the experimental conclusion. In this study, the strongly constrained and appropriately normed-revised Vydrov van Voorhis van der Waals correction functional (SCAN-rVV10) method at the meta-GGA level with the nonlocal van der Waals (vdW) force correction was used to reinvestigate the adsorption properties of O2 on the Ag(111) surface. The SCAN-rVV10 results successfully confirm the experimental observation that both molecular and dissociative adsorptions can exist for oxygen on Ag(111). The calculated adsorption energy for the physisorption state and the relevant dissociation energy barrier are close to the experimental data. It demonstrates that SCAN-rVV10 can outperform functionals at the GGA level for O2/Ag(111). Therefore, our findings suggest that SCAN-rVV10 can be the desired method for systems where the correct description of intermediate-ranged vdW forces is essential, such as the physisorption of small molecules on the solid surface.