Published in

Springer (part of Springer Nature), Current Environmental Health Reports, 2023

DOI: 10.1007/s40572-023-00394-8

Links

Tools

Export citation

Search in Google Scholar

Interventions to Reduce Exposure to Synthetic Phenols and Phthalates from Dietary Intake and Personal Care Products: a Scoping Review

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose of Review A scoping review was conducted to identify interventions that successfully alter biomarker concentrations of phenols, glycol ethers, and phthalates resulting from dietary intake and personal care product (PCPs) use. Recent Findings Twenty-six interventions in populations ranging from children to older adults were identified; 11 actively removed or replaced products, 9 provided products containing the chemicals being studied, and 6 were education-only based interventions. Twelve interventions manipulated only dietary intake with a focus on bisphenol A (BPA) and phthalates, 8 studies intervened only on PCPs use and focused on a wider range of chemicals including BPA, phthalates, triclosan, parabens, and ultraviolet absorbers, while 6 studies intervened on both diet and PCPs and focused on phthalates, parabens, and BPA and its alternatives. No studies assessed glycol ethers. All but five studies reported results in the expected direction, with interventions removing potential sources of exposures lowering EDC concentrations and interventions providing exposures increasing EDC concentrations. Short interventions lasting a few days were successful. Barriers to intervention success included participant compliance and unintentional contamination of products. Summary The identified interventions were generally successful but illustrated the influence of participant motivation, compliance, ease of intervention adherence, and the difficulty of fully removing exposures due their ubiquity and the difficulties of identifying “safer” replacement products. Policy which reduces or removes EDC in manufacturing and processing across multiple sectors, rather than individual behavior change, may have the greatest impact on population exposure.