Published in

American Institute of Physics, Applied Physics Letters, 13(122), p. 131103, 2023

DOI: 10.1063/5.0141530

Links

Tools

Export citation

Search in Google Scholar

Spatially resolved degradation effects in UVB LEDs stressed by constant current operation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

InAlGaN-based UVB light-emitting diodes with an emission wavelength of 310 nm were operated at an elevated nominal current density of 200 A/cm2 and a heatsink temperature of 29 °C. The spatial intensity distributions of the electroluminescence and photoluminescence were measured before, during, and after dc stress. A decreasing homogeneity of the spatial intensity distributions with operation time was observed. It is concluded that the current density distribution changes during operation. Furthermore, the active region degrades more rapidly in the areas of higher current density. By quantitatively evaluating the current density distribution, it is proposed that a decreasing radiative recombination efficiency of the active region is causing the decrease in the total optical power of the LEDs during operation.