Published in

MDPI, Genes, 8(12), p. 1179, 2021

DOI: 10.3390/genes12081179

Links

Tools

Export citation

Search in Google Scholar

Dysregulation of Synaptic Signaling Genes Is Involved in Biology of Uterine Leiomyoma

Journal article published in 2021 by Jovan Krsteski, Mario Gorenjak ORCID, Igor But ORCID, Maja Pakiž, Uroš Potočnik ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Uterine leiomyomas are tumors, which are hormone driven and originate from the smooth muscle layer of the uterine wall. In addition to known genes in leiomyoma pathogenesis, recent approaches also highlight epigenetic malfunctions as an important mechanism of gene dysregulation. RNA sequencing raw data from pair-matched normal myometrium and fibroid tumors from two independent studies were used as discovery and validation sets and reanalyzed. RNA extracted from normal myometrium and fibroid tumors from 58 Slovenian patients was used as independent confirmation of most significant differentially expressed genes. Subsequently, GWA data from leiomyoma patients were used in order to identify genetic variants at epigenetic marks. Gene Ontology analysis of the overlap of two independent RNA-seq analyses showed that NPTX1, NPTX2, CHRM2, DRD2 and CACNA1A were listed as significant for several enriched GO terms. All five genes were subsequently confirmed in the independent Slovenian cohort. Additional integration and functional analysis showed that genetic variants in these five gene regions are listed at a chromatin structure and state, predicting promoters, enhancers, DNase hypersensitivity and altered transcription factor binding sites. We identified a unique subgroup of dysregulated synaptic signaling genes involved in the biology and pathogenesis of leiomyomas, adding to the complexity of tumor biology.