Published in

Nature Research, Nature Photonics, 2024

DOI: 10.1038/s41566-024-01398-y

Links

Tools

Export citation

Search in Google Scholar

Direct linearly polarized electroluminescence from perovskite nanoplatelet superlattices

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPolarized light is critical for a wide range of applications, but is usually generated by filtering unpolarized light, which leads to substantial energy losses and requires additional optics. Here we demonstrate the direct emission of linearly polarized light from light-emitting diodes made of CsPbI3 perovskite nanoplatelet superlattices. The use of solvents with different vapour pressures enables the self-assembly of the nanoplatelets with fine control over their orientation (either face-up or edge-up) and therefore their transition dipole moment. As a result of the highly uniform alignment of the nanoplatelets, as well as their strong quantum and dielectric confinement, large exciton fine-structure splitting is achieved at the film level, leading to pure red light-emitting diodes with linearly polarized electroluminescence exhibiting a high degree of polarization of 74.4% without any photonic structures. This work demonstrates the potential of perovskite nanoplatelets as a promising source of linearly polarized light, opening up the development of next-generation three-dimensional displays and optical communications from a highly versatile, solution-processable system.