Published in

Wiley, Biological Reviews, 2(98), p. 450-461, 2022

DOI: 10.1111/brv.12914

Links

Tools

Export citation

Search in Google Scholar

Extreme weather events threaten biodiversity and functions of river ecosystems: evidence from a meta‐analysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTBoth gradual and extreme weather changes trigger complex ecological responses in river ecosystems. It is still unclear to what extent trend or event effects alter biodiversity and functioning in river ecosystems, adding considerable uncertainty to predictions of their future dynamics. Using a comprehensive database of 71 published studies, we show that event – but not trend – effects associated with extreme changes in water flow and temperature substantially reduce species richness. Furthermore, event effects – particularly those affecting hydrological dynamics – on biodiversity and primary productivity were twice as high as impacts due to gradual changes. The synthesis of the available evidence reveals that event effects induce regime shifts in river ecosystems, particularly affecting organisms such as invertebrates. Among extreme weather events, dryness associated with flow interruption caused the largest effects on biota and ecosystem functions in rivers. Effects on ecosystem functions (primary production, organic matter decomposition and respiration) were asymmetric, with only primary production exhibiting a negative response to extreme weather events. Our meta‐analysis highlights the disproportionate impact of event effects on river biodiversity and ecosystem functions, with implications for the long‐term conservation and management of river ecosystems. However, few studies were available from tropical areas, and our conclusions therefore remain largely limited to temperate river systems. Further efforts need to be directed to assemble evidence of extreme events on river biodiversity and functioning.