Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2(507), p. 2208-2219, 2021

DOI: 10.1093/mnras/stab2213

Links

Tools

Export citation

Search in Google Scholar

Constraining mechanism associated with fast radio burst and glitch from SGR J1935

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The discovery of fast radio burst (FRB) 200428 from galactic SGR J1935+2154 makes it possible to measure rotational changes accompanied by FRBs and to test several FRB models which may be simultaneously associated with glitches. Inspired by this idea, we present order of magnitude calculations to the scenarios proposed. FRB models such as global starquakes, crust fractures, and collisions between pulsars and asteroids/comets are discussed. For each mechanism, the maximum glitch sizes are constrained by the isotropic energy release during the X-ray burst and/or the SGR J1935+2154-like radio burst rate. Brief calculations show that, the maximum glitch sizes for different mechanisms differ by order(s) of magnitude. If glitches are detected to be coincident with FRBs from galactic magnetars in the future, glitch behaviours (such as glitch size, rise time-scale, the recovery coefficient, and spin-down rate offset) are promising to serve as criterions to distinguish glitch mechanisms and in turn to constrain FRB models.