Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(526), p. 3637-3651, 2023

DOI: 10.1093/mnras/stad2956

Links

Tools

Export citation

Search in Google Scholar

Timing properties of the X-ray accreting pulsar RX J0440.9+4431 studied with Insight-HXMT and NICER

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT RX J0440.9+4431, a Be/X-ray binary, had its brightest outburst in 2022 since its discovery, with a peak X-ray flux of 2.25 Crab (as recorded by Swift/BAT, 15–50 keV). We analyze the timing properties of this giant outburst using data from Insight-Hard X-ray Modulation Telescope and Neutron Star Interior Composition Exlporer, focusing on the evolution of the pulse profile and pulse fraction. We observe that when the luminosity reached around ~$3\times 10^{37}\ {\rm erg\ \rm s^{-1}}$, a transition from double-peaked to single-peaked pulse profiles occurred across the energy range, with the peak of the low-energy profile aligning gradually with the peak of the high-energy profile. This change indicates a transition from subcritical to supercritical accretion. Additionally, we found a concave in the pulse fraction as a function of energy around 20–30 keV throughout the entire outburst period. Compared to the low luminosity, the concave becomes weaker in high luminosities, and overall, the pulse fraction is higher. We propose that this concave could be caused by the scattering of high-energy photons by the atmosphere of a neutron star, leading to a dilution of the pulse fraction. As the accretion reaches the supercritical state, the accretion column height increases, resulting in a larger direct component of strongly beamed X-ray flux, and an elevated pulse fraction.