Published in

Nature Research, npj Quantum Materials, 1(8), 2023

DOI: 10.1038/s41535-023-00551-0

Links

Tools

Export citation

Search in Google Scholar

Topological surface magnetism and Néel vector control in a magnetoelectric antiferromagnet

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAntiferromagnetic states with no stray magnetic fields can enable high-density ultra-fast spintronic technologies. However, the detection and control of antiferromagnetic Néel vectors remain challenging. Linear magnetoelectric antiferromagnets (LMAs) may provide new pathways, but applying simultaneous electric and magnetic fields, necessary to control Néel vectors in LMAs, is cumbersome and impractical for most applications. Herein, we show that Cr2O3, a prototypical room-temperature LMA, carries a topologically-protected surface magnetism in all surfaces, which stems from intrinsic surface electric fields due to band bending, combined with the bulk linear magnetoelectricity. Consequently, bulk Néel vectors with zero bulk magnetization can be simply tuned by magnetic fields through controlling the magnetizations associated with the surface magnetism. Our results imply that the surface magnetizations discovered in Cr2O3 should be also present in all LMAs.