Published in

American Institute of Physics, Journal of Applied Physics, 12(133), 2023

DOI: 10.1063/5.0138096

Links

Tools

Export citation

Search in Google Scholar

A snapshot of domain evolution between topological vortex and stripe in ferroelectric hexagonal ErMnO3

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Hexagonal manganites exhibit three distinct domain patterns: stripe, loop, and vortex. Due to the high ferroelectric phase transition temperature and the lack of reliable visualization methods, it is still a mystery about the evolution and the formation of vortex networks. In this study, we managed to capture the coexistence of vortices, loops, and stripes by accurately controlling the annealing temperature right at Tc. We proposed a merging process between the V–AV pair and the stripe, which result in two different forms of vortex networks, namely, the normal vortex and the zigzag vortex. In addition, the connection between the density of stripes and the orientation of V–AV pairs is analyzed, which are both influenced by self-straining of the crystal. The mystery of evolution of the vortex network is unveiled by capturing the snapshot, and the experimental database provided calls for more analysis to understand the evolution of different domain topologies.