Published in

American Institute of Physics, Applied Physics Letters, 5(121), 2022

DOI: 10.1063/5.0087602

Links

Tools

Export citation

Search in Google Scholar

Anisotropic dielectric function, direction dependent bandgap energy, band order, and indirect to direct gap crossover in α-(AlxGa1−x)2O3 (≤x≤1)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(AlxGa1−x)2O3 thin films (0 ≤ x ≤ 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular (bEg,⊥ = 1.31 eV) and parallel (bEg,|| = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga2O3 and α-Al2O3, respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga2O3 whereas for α-Al2O3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M1 type in α-Ga2O3 to M0 type van Hove singularity in α-Al2O3.