Published in

American Institute of Physics, Applied Physics Letters, 8(121), 2022

DOI: 10.1063/5.0107159

Links

Tools

Export citation

Search in Google Scholar

High-density polarization-induced 2D electron gases in N-polar pseudomorphic undoped GaN/Al0.85Ga0.15N heterostructures on single-crystal AlN substrates

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The polarization difference and band offset between Al(Ga)N and GaN induce two-dimensional (2D) free carriers in Al(Ga)N/GaN heterojunctions without any chemical doping. A high-density 2D electron gas (2DEG), analogous to the recently discovered 2D hole gas in a metal-polar structure, is predicted in a N-polar pseudomorphic GaN/Al(Ga)N heterostructure on unstrained AlN. We report the observation of such 2DEGs in N-polar undoped pseudomorphic GaN/AlGaN heterostructures on single-crystal AlN substrates by molecular beam epitaxy. With a high electron density of ∼4.3 ×1013/cm2 that maintains down to cryogenic temperatures and a room temperature electron mobility of ∼450 cm2/V s, a sheet resistance as low as ∼320 Ω/◻ is achieved in a structure with an 8 nm GaN layer. These results indicate significant potential of AlN platform for future high-power RF electronics based on N-polar III-nitride high electron mobility transistors.